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What are we trying to do?

Claim: recursive equations are the bedrock of denotational semantics for PLs.

See: untyped languages (λ-calculus), PCF, higher-order references, recursive types, etc.

We can even prove it formally verify this claim in type theory!

recEqsAreCool : isCool(RecursiveEquations)
recEqsAreCool = fix(λprf → prf)

recursive equations & type theory do not mix.
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Guarded type theory: the basic components

A proposed answer: guarded type theory!

• fix is safe as long as we “do work” before recurring
• Use a unary type constructor (modality) to crystallize this discipline.

We arrive at the basic components of guarded recursion:

▶ : U → U loeb : (A : U) → (▶A → A) → A

recEqsAreCool : isCool(RecursiveEquations)
recEqsAreCool = loeb(λprf → prf)

Now the wrong type! ▶..., not ...
Lots of ways to structure this [Nak00; AM13; BM13; Møg14; BGM17; GB22; KMV22]
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Now the semantics of ▶

Guarded recursion ∼ proof-relevant step-indexing (via PSh(ω))

X0

X1

X2

. . .

JXK =

{⋆}

X0

X1

. . .

J▶XK =

Types ∼ Time-indexed sets Terms ∼ Time-preserving maps
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Are we done?

A few things are left to nail down:

1. ▶ is part of a whole family of modal operators, what about them?
2. ▶/loeb are sound, but what about canonicity, normalization, etc.

The challenge: how do we have a full dependent type theory with (1) and (2).
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Contributions: Gatsby

Turns out, we can reduce this to a question of modalities:

• We show that adding a new principle about modalities allows us to derive Löb.
• Crucially rely on univalence/HoTT in a few places...
• All told, obtain a new framework for guarded recursion: Gatsby.

Definitely satisfies (1) and have good evidence that (2) is also true.
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Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: modalities

One modality ▶ (also written ⟨ℓ | −⟩ for uniformity) is good, surely more is better!

t s
γ

δ

ϵ0

ℓ, e ⊤

e ◦ ℓ = id ϵ0 ◦ ℓ = ⊤
γ ◦ δ = id id ≤ δ ◦ γ

. . .

• Two classes of types: t for those which are guarded, s for standard types
• More modalities ∼ more control over “how fast” terms produce answers.
• Ex. ⟨e | A⟩ is “an A which has already done work” so ⟨e | ⟨ℓ | A⟩⟩ ≃ A.

Relatively new: adding modalities & univalence is cheap [Gra+20; Aag+22].

6



Guarded type theory: Löb induction

Theorem
No matter the combination of modalities, we cannot define loeb : (⟨ℓ | A⟩ → A) → A.

Proof.
Nothing allows us to internally prove ⟨ℓ | A⟩ ≠ A.

Pictured: Gatsby longing for Löb induction.
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Löb induction in type theory

Theorem (Gratzer and Birkedal [GB22])
If loeb computes then type-checking is undecidable.

Lemma
If loeb never computes then canonicity fails.

Canonicity Normalization

• Clocked type theory [BGM19; KMV22], let loeb compute only sometimes...
• Adding loeb is hard, I would prefer not to.
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Big idea: move the goal posts

Let’s play a new game:
 =

∥∥∑
n:Nat ▶

n⊥
∥∥

Key Idea
 is a doomsday proposition; hypothesizes everything will collapse... eventually.

Pictured: Well-known symbolism for .
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From existential dread to Löb induction

Theorem
If  then every operation f : ⟨ℓ | A⟩ → A has a unique guarded fixed-point:

 → isContr
(∑

a:A “a is a guarded fixed-point of f ”
)

Proof Sketch.
The goal is an (h-)proposition, so ignore ∥−∥ and use induction on n : Nat.

Univalence Alert
Relies on HoTT’s more semantic notion of proposition/truncation.
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Goal posts shifted... Now what to do with ?

If  were true, we’d be done... but this breaks decidable type-checking [GB22]

Key Idea
It suffices to find a supply of (very cynical) types which believe  to be true.

Definition
A is accessible if the canonical map A → ( → A) is an equivalence.

Theorem
If A is accessible then loeb : (▶A → A) → A

Not every type is accessible (for instance, not !) but a lot of them are...
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Accessible types

Theorem (Rijke, Shulman, and Spitters [RSS20])
Accessible types form a reflective subuniverse closed under Π, Σ, =, 1, and U.

Univalence Alert
Crucial use of univalence to show that U =

∑
A:U isAcc(A) is accessible.

This is all well and good, but we want some non-trivial base types!
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Enter ⊤

To move further, we turn back to our new modality: ⊤ : s s:

Key Idea
Add one new rule to force ⟨⊤ | A⟩ ≃ Unit.

Immediate consequence: ⟨ϵ0 | ⟨ℓ | A⟩⟩ ≃ ⟨⊤ | A⟩

For the Γ and ⊢ rules forcing ⟨⊤ | A⟩ ≃ Unit
See the paper!
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The world’s hardest working unit type

Remarkably, ⊤’s existence yields more accessible types!

Theorem

• If ⟨ℓ | isAcc(A)⟩ then ⟨ℓ | A⟩ is accessible.
• For any s type (i.e., not guarded) A, ⟨δ | A⟩ is accessible.

Corollary
Being accessible is closed under 0, +, Bool, and Nat.

Checking the scoreboard... that’s pretty much all the type-formers!
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The payoff

Since so many types are accessible, we can begin work exclusively with accessible types.

Theorem
Standard guarded type theory (2,▶ etc.) has a model in accessible types.

• Since e.g., Nat is accessible, we can use loeb to compute concrete numbers!
• It also means that users of Gatsby never actually have to talk about
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A few case studies

Extra modalities & standard v guarded type separation give new opportunities:

• We define a logical relation for general references using loeb for type safety
• We construct non-guarded coinductive types using guarded recursion internally.
• Both of these prove results about non-guarded objects using guarded recursion!

Via a semantic model, an adequate proof strategy: cubical version of PSh(ω).
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Is Gatsby great?

We show that adding a new principle about modalities allows us to derive Löb.

• Crucially rely on univalence/HoTT in a few places...
• All told, obtain a new framework for guarded recursion.

Definitely satisfies (1) and have good evidence that (2) is also true.
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A few words on the proof

Theorem

• If ⟨ℓ | isAcc(A)⟩ then ⟨ℓ | A⟩ is accessible.
• For any s type (i.e., not guarded) A, ⟨δ | A⟩ is accessible.

The proof amounts to two crucial facts:

• ⟨e | ⟩ ≃

• ⟨ϵ0 | ⟩ ≃ 1.

Proven formal modal shuffling & the fact that ⟨⊤ | A⟩ = 1.

Key Idea
Novel rule means ⟨⊤ | A⟩ ≠ A and equations between modalities then ripple out.
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