Assignment 6 Hand in date: November 18, 2020

Exercise 1. Let $\mathbb C$ and $\mathbb D$ be two categories and assume $\mathbb D$ has pullbacks. Let $F,G:\mathbb C\to\mathbb D$ be functors. Show that a natural transformation $\alpha:F\to G$ is a monomorphism if and only if each of the components $\alpha_c:F(c)\to G(c)$ is a monomorphism in $\mathbb D$.

Exercise 2. Let **FinSets** be the category of finite sets and functions. Let ω be the ordered set of natural numbers with the usual order

$$0 \le 1 \le 2 \le 3 \le \cdots$$

1. Show that the category $\mathbf{FinSets}^{\omega^{\mathrm{op}}}$ is cartesian closed.

Hint: follow the general construction of exponents in $\mathbf{Sets}^{\omega^{\mathrm{op}}}$ and show it restricts to $\mathbf{FinSets}^{\omega^{\mathrm{op}}}$.

2. Show that the category **FinSets** $^{\omega}$ *is not* cartesian closed.

Hint: Consider the object *N* defined as

$$[0] \hookrightarrow [1] \hookrightarrow [2] \hookrightarrow [3] \hookrightarrow \cdots$$

where [n] is the set $\{0,1,\ldots n\}$ and all arrows are subset inclusions. Then consider the sets $\operatorname{Hom}(N,2)$ and $\operatorname{Hom}\left(1,2^N\right)$ assuming the exponential object 2^N exists. The object 2 is as usual 1+1.

You may assume that all *finite* limits exist in both $\mathbf{FinSets}^{\omega^{\mathrm{op}}}$ and $\mathbf{FinSets}^{\omega}$ and that they are given pointwise as in $\mathbf{Sets}^{\omega^{\mathrm{op}}}$ and \mathbf{Sets}^{ω} .

Remark 1. The second item of the preceding exercise shows that even if $\mathbb D$ is cartesian closed and has all finite limits it need not be the case that $\mathbb D^{\mathbb C}$ is cartesian closed.

Exercise 3. Let **Sets** be the category of sets and functions and *A* a set. Does the functor

$$\mathbf{Hom}(A, -) : \mathbf{Sets} \to \mathbf{Sets}$$

have a left adjoint? Does it have a right adjoint? If they exist describe them, and if not prove it.