Assignment 1 Hand in date: September 16, 2020

Exercise 1. Let *T* be the following functor on **Sets**. It maps the set *X* to its power set $\mathcal{P}(X)$ and it maps the function $f : X \to Y$ to the image function

$$T(f): \mathcal{P}(X) \to \mathcal{P}(Y),$$

which is defined as

$$T(f)(A) = \{f(x) \mid x \in A\}$$

Show that *T* is a functor from **Sets** to **Sets**.

Exercise 2. Define the category \mathbb{K} as follows. Its objects are sets. Morphisms $X \to Y$ in \mathbb{K} are morphisms $X \to T(Y)$ in **Sets**, i.e.,

$$\operatorname{Hom}_{\mathbb{K}}(X, Y) = \operatorname{Hom}_{\operatorname{Sets}}(X, T(Y)).$$

Composition is defined as follows: if $f : X \to Y$ and $g : Y \to Z$ are two morphisms in \mathbb{K} then

$$(g \circ f)(x) = \bigcup_{y \in f(x)} g(y) = \{z \mid \exists y \in f(x), z \in g(y)\}.$$

- Show that **K** is a category.
- Show that it is isomorphic to the category of sets and relations **Rel**. Hint: Any subset $R \subseteq X \times Y$ can be represented as a function $F(R) : X \to \mathcal{P}(Y)$ defined as

$$F(R)(x) = \{y \mid (x, y) \in R\}.$$

Exercise 3. Let \mathbb{C} be a category with binary products.

- Is the projection $\pi_X : X \times Y \to X$ an epimorphism in general? Is it a monomorphism?
- Let $f : Z \to X$, $g : Z \to Y$, and $h : W \to Z$ be three morphisms. Show

$$\langle f, g \rangle \circ h = \langle f \circ h, g \circ h \rangle$$

as morphisms $W \to X \times Y$.

• Let $f : Z \to X$ and $g : W \to Y$ be two morphisms. Show there *exists* a *unique* morphism $u : Z \times W \to X \times Y$ such that for all objects A and morphisms $h_Z : A \to Z$ and $h_W : A \to W$

$$u \circ \langle h_Z, h_W \rangle = \langle f \circ h_Z, g \circ h_W \rangle.$$

as morphisms $A \rightarrow X \times Y$. This unique morphism *u* is typically written as $f \times g$.

• Using the notation from the previous item, show that for any morphisms $f : Z \to X, g : W \to Y, h : A \to Z$, and $k : B \to W$ we have

$$(f \times g) \circ (h \times k) = (f \circ h) \times (g \circ k)$$

as morphisms $A \times B \rightarrow X \times Y$.